ÉϺ£ÖÐÈËרҵÌṩZRRGZN-02Ð×÷»úÆ÷ÈËÊÓ¾õƽ̨,ÊÇרҵµÄ½ÌѧÉ豸Éú²ú³§¼Ò£¬ÎÒÃÇ»¶ÓÄúÀ´ÎÒÃÇÉú²ú»ùµØ¿¼²ìZRRGZN-02Ð×÷»úÆ÷ÈËÊÓ¾õƽ̨£¬²¢ÎªÄúÌṩרҵµÄ½â¾ö·½°¸¡£½ÌѧÉ豸¿ÉÒÔ½â¾ö½Ìʦ½ÌѧȱÉÙÆ½Ì¨£¬Ñ§ÉúȱÉÙʵ²Ù¾ÑéµÄÄÑÌâ¡£ZRRGZN-02Ð×÷»úÆ÷ÈËÊÓ¾õƽ̨£¬ÊÇÖÐÈ˹«Ë¾µÄÆ·ÖÊÐ§Òæ±£ÕϽÌѧ²úÆ·¡£ ÎÄÕÂÄÚÈÝÖеÄͼƬΪ²Î¿¼Í¼Æ¬,½ö¹©²Î¿¼,ÒÔʵÎïΪ׼.
±¾ÎĹؼü´Ê£ºZRRGZN-02Ð×÷»úÆ÷ÈËÊÓ¾õƽ̨²Î¿¼Í¼Æ¬
ÌØµãºÍÓÅÊÆ
£¨1£©Ö§³ÖÁ½ÖÖ¿ª·¢»·¾³¡£ÊµÑéÈí¼þÌṩjupyter notebookºÍVS2015Á½ÖÖ¿ª·¢»·¾³£¬ÆäÖÐjupyter notebook²ÉÓÃPython±à³ÌÓïÑÔ£¬VS2015²ÉÓÃC++±à³ÌÓïÑÔ£¬Óû§¸ù¾Ýʵ¼ÊÐèҪѡÔñ£¬¿ÉÂú×㲻ͬԺУµÄ½ÌѧҪÇó¡£
£¨2£©Ô´´úÂ뿪·Å¡£¿ª·ÅÈ«²¿Èí¼þ¿ò¼ÜºÍËã·¨¼¶Ô´´úÂ룬ѧÉú¿ÉÔÚ´úÂë²ãÃæ£¬Í¨¹ýµ÷²Î¡¢´úÂëÌî³äµÈ·½Ê½½øÐÐÓ¦ÓúÍÑéÖ¤ÐÔÖʵĿγ̻ù´¡ÊµÑ飬Ҳ¿É²Î¿¼ÊµÑéÖ¸µ¼Ê飬×ÔÐбàд´úÂ룬½øÐÐÏà¶Ô¸´ÔÓµÄÏîĿʵÑé¡£½ÌʦÔò¿ÉÒÀÍÐ¸ÃÆ½Ì¨£¬½øÐÐÉî¶ÈµÄ¶þ´Î¿ª·¢¡£
ϵͳÖ÷Òª¹¦ÄÜÄ£¿é
£¨1£©±ßÔµ¼ÆËãÖÕ¶Ë
±ßÔµ¼ÆËãÖն˲ÉÓÃNVIDIA¹«Ë¾µÄJetson Nano´¦ÀíÆ÷£¬¸Ã´¦ÀíÆ÷¾ß±¸GPUÔËË㹦ÄÜ£¬¼È¿É×÷Ϊ±ßÔµ¼ÆËãÖÕ¶Ë£¨¼´Ð¡Ð͵çÄÔ£©Ê¹Óã¬Ò²¿É½øÐлùÓÚÉî¶ÈѧϰµÄÊý×ÖͼÏñ´¦ÀíÏà¹ØµÄ·ÖÎöºÍÔËË㡣ͨ¹ýÔÚ´¦ÀíÆ÷Öв¿ÊðÊÓ¾õϵͳSDK¡¢PythonºÍOpenCVµÈÏà¹ØÈí¼þºÍ¿ò¼Ü£¬ÒÔ¼°ÓëÍâ½ÓÉ豸µÄͨѶÐÒ飬ѧÉú¼´¿ÉÍê³É´ÓÊÓ¾õϵͳӲ¼þ´î½¨¡¢Í¼Ïñ²É¼¯¡¢Í¼Ïñ´¦Àí£¬µ½ÊµÑéÁ÷³ÌÉè¼ÆÓëÂÛÖ¤£¬ÔÙµ½ÊÓ¾õϵͳºÍÍⲿÉ豸µÄÁª¶¯¿ØÖƵÈһϵÁй¦ÄÜ£¬ÎÞÐèÁíÍâÅäÖõçÄÔ¡£
±ßÔµ¼ÆËãÖÕ¶ËÖ÷Òª¼¼Êõ²ÎÊýÈçÏ£º
l ´¦ÀíÆ÷£º64λËĺËCORTEX-A57£¬128ºËMAXWELL GPU£»
l Äڴ棺4GB LPDDR£¬°åÔØ´æ´¢£º64GB£»
l ½Ó¿Ú£ºUSB3.0¡Á4£¬Micro USB¡Á1£¬ HDMI¡Á1£¬RJ45¡Á1£¬DC5.5¡Á2.1µçÔ´½Ó¿Ú£»
l ¼¯³ÉLinux¡¢PythonµÈÔËÐл·¾³£¬Ö§³ÖÊý×ÖͼÏñ´¦Àí¡¢»úÆ÷ÊÓ¾õ¡¢Éî¶ÈѧϰµÈËã·¨¡¢Ó²¼þ¡¢Ó¦ÓõĿª·¢ºÍѧϰ¡£
»úе±Û²ÎÊý
Mycobot-Pi |
||
»úе±Û²ÎÊý |
±ÛÕ¹ |
280mm |
×ÔÓÉ¶È |
6 |
|
¸ºÔØ |
250g |
|
µç×Ó²ÎÊý |
SOC |
BroadcomBCM2711 |
CPU |
1.5Hz |
|
À¶ÑÀ/ÎÞÏß |
yes |
|
USB |
USB3.0*2£»USB2.0*2 |
|
ÏÔʾÆÁÄ» |
no |
|
HDMI½Ó¿Ú |
microHDMI*2 |
|
×Ô¶¨Òå°´¼ü |
no |
|
IO½Ó¿Ú |
40 |
|
Èí¼þƽ̨ |
ÊÊÓÃÓÚ |
¶ÀÁ¢¹¤×÷ |
±à³Ìƽ̨ |
Debian/Ubuntu |
|
ROS/Python |
ÄÚǶ |
|
ͼÐλ¯±à³Ì |
ÄÚǶ |
ÊÓ¾õϵͳÖ÷ÒªÓ²¼þÈçÏ£º
1£©¹¤ÒµÏà»ú
l ´«¸ÐÆ÷ÐͺţºSharp RJ33£»
l ÏñÔª³ß´ç£º3.75 ¦Ìm¡Á3.75 ¦Ìm£»
l °ÐÃæ³ß´ç£º1/3¡±£»
l ·Ö±æÂÊ£º1280¡Á960£»
l Ö¡ÂÊ£º30 fps£»
l ÆØ¹âʱ¼ä£º34¦Ìs¡«1sec£»
l ºÚ°×/²ÊÉ«£º²ÊÉ«£»
½Ó¿Ú£ºGiGE¡£
2£©¹¤Òµ¾µÍ·
l ½¹¾à£º¹Ì¶¨½¹¾à£»
l ¹âȦ£ºÊÖ¶¯¹âȦ£»
l ÏñËØ¼¶±ð£º600ÍòÏñËØ£¬FA ¾µÍ·£»
l ½¹¾à´óС£º12mm £»
l FÊý£ºF2.8¡«F16¡£
3£©LED¹âÔ´
l ¹âÔ´Àà±ð£º30¶È»·ÐιâÔ´£»
l LEDÀàÐÍ£ºÌùƬLED£»
l ÑÕÉ«£º°×É«£»
l ɫΣº6600K£»
l ¹¦ÂÊ£º14.4W¡£
ʵÑéÏîÄ¿
£¨1£©»ù´¡ÊµÑ飺PythonÓïÑÔ³ÌÐòÉè¼Æ
l python¼¯³É¿ª·¢»·¾³´î½¨¡¢Èí¼þ°²×°ÊµÑé
l python±à³ÌʵÑ飺¼ÆËãÈÎÒâÊäÈëÕûÊýµÄ½×³Ë
l python±à³ÌʵÑ飺ººÅµËþÎÊÌâ
l python±à³ÌʵÑ飺ʹÓÃÃÉÌØ¡¤¿¨ÂÞ·½·¨¼ÆËãÔ²ÖÜÂʽüËÆÖµ
l python±à³ÌʵÑ飺ʹÓÃNumpy½øÐÐt¼ìÑé
l python ±à³ÌʵÑ飺ʹÓÃPIL¶ÁÈ¡¡¢ÏÔʾºÍ´¦ÀíͼÏñ
l python GUI±à³ÌʵÑ飺matplotlibÊý¾Ý¿ÉÊÓ»¯
l python GUI±à³ÌʵÑ飺¶¯Ì¬Ê±ÖÓÉè¼Æ
£¨2£©»ù´¡ÊµÑ飺Êý×ÖͼÏñ´¦Àí
l ͼÏñµÄ´úÊýÔËËã
l ͼÏñ±ä»»
l ͼÏñ·Ö¸î
l ͼÏñƽ»¬
l ͼÏñÔöÇ¿
l ²ÊɫͼÏñ´¦Àí
l ÐÎ̬ѧ´¦Àí
l ±ßÔµ¼ì²â
l Ö±Ïß¡¢Ô²¼ì²â
l Èý½ÇÐΡ¢¾ØÐμì²â
£¨3£©»ù´¡ÊµÑ飺»úÆ÷ÊÓ¾õ
l ÊÓ¾õϵͳ´î½¨ÓëÓ²¼þ²Ù×÷
l ͼÏñ²É¼¯ÓëÏÔʾ
l ÊÓ¾õ¶¨Î»
l ÊÓ¾õϵͳµÄ±ê¶¨
l ÑÕɫʶ±ð
l ÐÎ״ʶ±ð
l ²âÁ¿ÎïÌå³ß´ç
l ÎïÌåÓÐÎÞ¼ì²â
£¨4£©¿Î³ÌÉè¼Æ£ºÈËÁ³Ê¶±ðϵͳ
l Äܹ»Â¼ÈëÈËÁ³Êý¾Ý£»
l ÄÜʵÏÖÉí·ÝÈÏÖ¤£»
l ÓÐרÃŵÄÓû§²Ù×÷½çÃæ¡£
£¨5£©¿Î³ÌÉè¼Æ£ºÄ¿±êʶ±ðϵͳ
l Äܹ»Ê¶±ðÆ½Ãæ²ÊɫĿ±ê£¬ÈçÔ²ÐΡ¢¾ØÐΡ¢Èý½ÇÐΣ¬»òÕßÀûÓÃÉî¶Èѧϰ¼¼Êõʶ±ðÆäËû¸´ÔӽṹĿ±êͼ°¸£»
l ÓÐרÃŵÄÓû§²Ù×÷½çÃæ¡£
£¨6£©¿Î³ÌÉè¼Æ£ºÎïÌåȱÏݼì²âϵͳ
l Äܹ»¶ÔÎïÌå½øÐÐÔ¤´¦Àí£»
l Äܹ»¼ì²âÊÇ·ñÓÐȱÏݲ¢ÌáȡȱÏÝÌØÕ÷£»
l Äܹ»Êä³öȱÏݵĴóС£¬ÅжÏÄ¿±êÊÇ·ñºÏ¸ñ¡£
£¨7£©¿Î³ÌÉè¼Æ£ºOCR×Ö·ûʶ±ðϵͳ
l ÄܶÔͼÏñ½øÐÐÔ¤´¦Àí£¬Í¹ÏÔ³öÊÓÒ°ÖеÄ×Ö·ûÇøÓò£»
l ÄÜ·ÖÎö×Ö·ûÐÎ̬£¬Èç¼ä¾à¡¢¸ß¶ÈµÈ£»
l Äܽ«×Ö·ûÖð¸ö·Ö¸î³öÀ´£¬²¢½øÐÐ׼ȷʶ±ð£¬¶øºóÏÔʾ¡£
£¨8£©¿Î³ÌÉè¼Æ£º³µÅƼì²âÓëʶ±ðϵͳ
l ÄÜ´ÓÊÓÆµÁ÷ÖÐÌáÈ¡ÌØ¶¨Ö¡Í¼Ïñ£¬²¢½øÐÐÔ¤´¦Àí£¬Â˳ý¸ÉÈÅÐÅÏ¢£»
l ÄÜ´ÓͼÏñÖж¨Î»µ½³µÅÆÎ»Öã»
l ¶Ô³µÅÆÐÅÏ¢½øÐÐʶ±ð£¬²¢Êä³öµ½½çÃæ¡£
£¨9£©¿Î³ÌÉè¼Æ£ºÖÖ×Ó¼ÆÊýÓë·Ö¼¶ÏµÍ³
l ÄܶÔͼÏñ½øÐÐÔ¤´¦Àí£¬Â˳ý¸ÉÈÅÐÅÏ¢£»
l ÄܶԲ»Í¬ÖÖ×Ó½øÐзָͳ¼ÆÓÐЧÖÖ×ÓµÄÊýÁ¿£»
l ÄÜÖð¸öÅбðÖÖ×ÓÌØÕ÷£¬¸ù¾Ý·ÖÀàÒÀ¾Ý½øÐÐÖÖ×Ó·Ö¼¶¡£